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Abstract

This paper presents a dynamic model of optimal bank capital in which the bank optimizes

over costs associated with failure, holding capital, and flows of external capital. The solution

to the infinite-horizon stochastic optimization problem is related to period-by-period value at

risk (var) in which the optimal probability of failure is endogenously determined. Over a cycle,

var is positively correlated with optimal flows of external capital, but negatively correlated

with optimal net changes in capital and the optimal level of total capital. Analysis of this pat-

tern suggests that a regulatory minimum requirement based on var, if binding, is likely to be

procyclical. The model points to several ways of reducing this problem. For example, a var-

based requirement makes more sense if it is applied to external capital flows than if it is applied

to the total level of capital. US commercial bank data since 1984 are generally consistent with

the model.
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1. Introduction

This paper examines the optimal behavior of a bank with regard to capital when

the bank is exposed to stochastic losses with a cyclical predictable component, and

investigates the extent to which bank capital requirements based on value at risk
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(var) are likely to exacerbate an economic or financial cycle. For instance, would

such requirements be binding on prudent banks in economic recessions, leading to

a reduction in lending as the economy is slowing down, and non-binding in economic

expansions, perhaps encouraging excessive lending? Earlier research has inquired

whether the 1988 Basel Accord, in which minimum capital requirements are
somewhat responsive to risk, contributed to an economic slowdown – a ‘‘credit

crunch’’ – in the United States in the early 1990s. 1

With the introduction of new risk-sensitive Basel requirements in 2001 (Basel

Committee, 2001a), concerns about the so-called procyclicality of capital require-

ments have again surfaced. For instance, Bank for International Settlements General

Manager Andrew Crockett (2000) has warned that: ‘‘Indicators of risk tend to be at

their lowest at or close to the peak of the financial cycle, i.e., just at the point where,

with hindsight, we can see that risk was greatest.’’
The new Basel requirements are not based on var. They rely on internal or exter-

nal credit ratings to assign risk weights to instruments in banks’ portfolios. Never-

theless, the Basel Committee (2001b) ‘‘believes that improvements in risk

measurement and management will pave the way to an approach that uses full credit

models as a basis for regulatory capital purposes’’. Therefore, it is not too early to

consider the consequences of using credit risk models to formulate capital require-

ments, and it is likely that those requirements would make use of model-based var

or some component thereof (see Basel Committee, 1999). 2

To examine the issue of the procyclicality of var-based requirements, the main

strategy of this paper is to construct a formal model of how a forward-looking bank

with rational expectations would choose its optimal level of capital in a stochastic

dynamic setting. We also consider regulatory objectives and the behavior of an op-

timizing bank if it is subject to potentially binding var-based requirements.

The bank in the model faces three types of capital-related costs: the cost of hold-

ing capital, the cost of failure, and the cost of net changes in external capital. The

objective of the bank is to minimize a function of the three types of costs over an
infinite horizon, given some dynamic identities. The bank is assumed to have rational

expectations, and it selects a stream of net external capital flows over the infinite ho-

rizon. 3 The solution allows for the expression of the current level of capital and the

current external capital flow as functions of current and expected future net losses to

the bank.
1 The conclusions of this research are mixed. See, e.g., Bernanke and Lown (1991), Lown and Peristiani

(1996) and Jackson et al. (1999).
2 Note also that Gordy (2000) argues that a mapping may be constructed between var and the minimum

requirements in the new Basel Accord (Basel Committee, 2001a), and that the mapping reconciles the two

approaches under certain conditions. Thus, the analysis of this paper could be useful in the

implementation of the new Accord, though differences between the Accord and var must be carefully

considered. Ervin and Wilde (2001), European Central Bank (2001) and Jokivuolle and Peura (2001) have

expressed concerns about the cyclical implications of the new Basel Accord, as have policymakers such as

Greenspan (2001) and Clementi (2001).
3 Estrella (2003) discusses cases in which expectations are non-rational, e.g., they are based on rules of

thumb.
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To investigate cyclical behavior, losses are then assumed to follow a second-order

autoregressive process with complex roots, so that expected future losses cycle

around the unconditional mean of the distribution of losses. 4 This assumption

makes it possible to calculate all expected future losses and to solve explicitly for

the current level and flow of capital in terms of observable losses. The theoretical im-
plications of these results are used to examine the relationship between var-based re-

quirements and the unconstrained optimum path of capital. In addition, some

theoretical implications of the model are used to test its empirical plausibility when

confronted with data for US banks since 1984.

In the context of the basic model of this paper, the bank is a prudent optimizer

and there are no externalities, so there is no formal need for regulatory or supervi-

sory intervention. Nevertheless, under certain circumstances, authorities might issue

minimum capital requirements as a means of correcting market imperfections or sim-
ply of identifying any banks that stray away from optimizing behavior. Thus, capital

requirements could be introduced as benchmarks to verify that banks are holding

capital levels that are consistent with regulatory objectives over the cycle. 5 We con-

sider what forms those benchmarks could take and, in particular, whether they may

be based on var. In addition, we consider how optimizing behavior would be altered

if a var-based minimum were explicitly imposed.

The theoretical findings of the paper show that optimal flows of external capital

are positively correlated over the cycle with the var measure, but that optimal net
changes in capital and the optimal level of total capital are negatively correlated with

var. These results suggest that a regulatory minimum requirement based on var, if

binding, is likely to be procyclical. Of course, procyclicality is a macroeconomic phe-

nomenon, whereas the cyclical behavior investigated here is microeconomic. How-

ever, if the cyclical pattern of bank losses is driven by, say, a macroeconomic

business cycle, the pattern is bound to affect banks with similar timing and direction-

ality. In the aggregate, procyclicality would ensue. By examining the causes of pro-

cyclicality, the model also suggests several ways of dealing with this potential
problem.

These results diverge in some ways from the conventional wisdom regarding cap-

ital and risk because the standard approach to optimal capital is essentially static

and not sufficiently forward-looking. The model of this paper takes explicit account

of stocks and flows of capital over time and incorporates dynamic adjustment costs

that are likely to exist in practice.

Section 2 of the paper presents the model and its solution in general terms and

discusses the possible use of var to achieve regulatory objectives. Section 3 presents
the central results of the paper. It introduces a cyclical process for losses and exam-

ines its implications for the cyclical behavior of optimal capital levels and flows. In
4 Theoretical analyses of dynamic capital structure models have frequently assumed that asset values

follow geometric Brownian motion processes, which cannot produce cyclical behavior as defined here. See,

for example, Fischer et al. (1989) and Leland (1994, 1998).
5 Other reasons have been proposed for the existence of capital requirements. Very useful surveys are

Berger et al. (1995) and Santos (2001).
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addition, Section 3 provides numerical examples to illustrate the properties of

the model and the relationships among var, net income, and capital stocks and

flows. Some empirical evidence, based on call report data for FDIC-insured US

commercial banks, is provided in Section 4. Finally, Section 5 discusses policy impli-

cations.
2. Model description and general solution

The question of this paper is dynamic in a very essential way. We would like to

examine the cyclical behavior of optimal capital for a bank, where a cycle is defined

as a particular predictable pattern that unfolds over time. Since the pattern is pre-

dictable, it can and should be anticipated in the bank’s decision-making, in particu-
lar in those decisions affecting capital. 6 A static model may be able to identify some

features of these optimal decisions, but it is necessarily myopic and any conclusions

about dynamics are bound to be ad hoc.

Some of the issues addressed by the model have been raised earlier in the litera-

ture, but by and large the analysis has been based on essentially static models.

For instance, the key distinction between flows of external and internal capital has

been made in papers by Froot et al. (1993), and Froot and Stein (1998). These papers

develop a three-period model of bank capital with costs analogous to those of this
paper, including costs of capital, failure, and adjustment. Since the model is moder-

ately dynamic – it has three periods – it is possible to make distinctions between cap-

ital stocks and flows, and to speak of costs of adjustment, but not to analyze cyclical

patterns.

Winter (1994) and Cummins and Danzon (1997) construct dynamic models of in-

surance company balance sheets in which capital plays an important role. They in-

clude costs analogous to those of this paper in a static theoretical model of an

insurance company, which is then embedded in a dynamic empirical model. The au-
thors draw important distinctions between stocks and flows of internal and external

capital.

Some earlier papers have raised the issue of the cyclical behavior of capital explic-

itly, albeit within the framework of static models. These include the property–liabil-

ity insurance model of Winter (1991) and the banking models of Blum and Hellwig

(1995), Heid (2000), and Hoggarth and Saporta (2001). 7
6 Note that the fact that there is a predictable cyclical pattern does not imply that bank profits and

capital are totally predictable, nor that the predictable cyclical pattern is simple. In Section 3, we focus on

impulse response functions, which illustrate the relatively simple effects of an isolated stochastic shock to

losses. However, when shocks occur every period, forecasts of the predictable pattern must be updated

every period as well and the pattern may be much more complex.
7 The closest precedents for the formal dynamic structure of the present model are not in the financial

capital literature, but in the literature on business inventories (for instance, Blanchard, 1983; Blanchard

and Fischer, 1989).
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2.1. Characteristics of the bank

We consider a bank operating in a discrete-time infinite-horizon environment.

The bank’s stylized balance sheet at the beginning of period t is given by
Ft þ Vt ¼ Dt þ It; ð1Þ

where F ¼ value of safe asset, V ¼ value of risky asset, D¼ deposits, and I ¼ initial

capital (beginning of period).
Bank assets may be invested in the safe instrument, say government bonds, which

has a deterministic yield, and in the risky asset, say loans, whose return is stochastic.

Bank liabilities consist of deposits only. At the start of each period, the bank has

some capital carried over from the previous period ðKt�1Þ and it raises a net amount

ðRtÞ from external sources. We call the sum of these two terms ‘‘initial capital’’

ðIt ¼ Kt�1 þ RtÞ.
The bank’s income statement is
rFt Ft þ rVt Vt þ Rt ¼ rDt Dt þ DKt; ð2Þ

where rFt and rDt are deterministic returns and rVt is a stochastic return on the risky

asset. Define net losses as
Lt ¼ rDt Dt � rFt Ft � rVt Vt : ð3Þ

Net losses are simply the negative of net income or profits for the bank, but working

with losses is more convenient because they relate more clearly to var. At the end of

the period, net losses sustained are revealed, and end-of-period capital is given by the

dynamic identity
Kt ¼ Kt�1 þ Rt � Lt; ð4Þ

which is implicit in the income statement (2).

The return on the risky asset is modeled as
rVt ¼ EtrVt � gt; ð5Þ

where gt is a random shock with Etgt ¼ 0. Then
EtLt ¼ rDt Dt � rFt Ft � ðEtrVt ÞVt ð6Þ

and
Lt ¼ EtLt þ ut ð7Þ

with
ut ¼ gtVt : ð8Þ

From (8), we see that Vt determines the scale of the risk embodied in ut.

Losses are known with certainty only at the end of the period. However, at the

start of the period the bank is assumed to know the probability distribution of the

period’s losses, which is a function of Vt and of the random variable gt. The timing

of the capital and loss variables and of the resolution of uncertainty is summarized in

Table 1.



Table 1

Timing conventions for period t

Time t � 1 (beginning of period t) Time t (end of period t)

Assess how much capital is available ðKt�1Þ Losses for period become known ðLtÞ
Decide how much capital to raise ðRtÞ End of period capital is determined ðKtÞ
Initial available capital ðIt ¼ Kt�1 þ RtÞ

Stochastic distribution of losses ðF ðutÞÞ Value of ut known
Expected losses ðEtLtÞ
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Note that capital here represents equity capital only. Including other elements of

bank capital is possible, but it would complicate the dynamics without adding much

to the intuition derived from the model. Net external capital raised is a combination

of inflows (new external capital) and outflows (dividends, stock buybacks). In nor-

mal circumstances, these flows are dominated by dividend payments in the case of

US banks, as we observe in Section 4.

Note also that expected losses as defined here (as rational expectations) are differ-

ent in general from the reserves for loan losses prescribed by accounting rules for
banks. These expected losses are closer to the ‘‘statistical provisions’’ recently intro-

duced by regulators in Spain, as described by Fern�andez de Lis et al. (2000). Cavallo
and Majnoni (2001) discuss loan loss provisions in G10 and non-G10 countries.

For expositional purposes, we first consider the model in the absence of adjust-

ment costs, which is essentially myopic. We then turn to the full dynamic model with

adjustment costs.
2.2. Optimization with no adjustments costs

In this section, we model two of the three capital-related costs that banks face: the

cost of holding capital and the cost of failure. First, it is costly for the bank to hold

capital, and the cost is proportional to the level of capital of an operating bank. This

cost is not necessarily the nominal return on capital, but may be the difference be-

tween the cost of capital funding and funding through other means such as debt. 8

We express this cost of capital as
8 Je

cash fl
9 At

econom

analog

succes

multin
Cc ¼ maxfccKt; 0g: ð9Þ
The stochastic component of losses is assumed to have a time-invariant continuous

cumulative distribution function F ðutÞ, which is known at the beginning of the pe-

riod. 9 Thus, the expected value of this cost at time t is given by
nsen (1986), for instance, argues that substituting equity with debt can reduce agency costs of free

ow.

least at the aggregate level, there is evidence of cyclical stability in the uncertain component of

ic returns. For instance, Price (1994) finds that the process for UK GDP is homoskedastic, and

ous results may be obtained for the United States (see Estrella, 2003). Also, Nickell et al. (2000)

sfully model cyclical fluctuations in credit rating transition matrices using a homoskedastic

omial ordered probit model.
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EtCc ¼ cc

Z Kt�1þRt�EtLt

�1
ðKt�1 þ Rt � EtLt � utÞF 0ðutÞdut: ð10Þ
Second, the bank faces a cost of failure, which is proportional to the absolute value

of the negative net worth of a bank that fails. 10 This measure corresponds to the

costs of bankruptcy, including loss of charter value, reputational loss, and legal

costs. It is represented as
Cf ¼ maxf�cf Kt; 0g ð11Þ

and its expected value at time t is
EtCf ¼ cf

Z 1

Kt�1þRt�EtLt

ð�Kt�1 � Rt þ EtLt þ utÞF 0ðutÞdut: ð12Þ
In the absence of adjustment costs, the bank may fully adjust to the desired level of

capital in the current period. Thus, the bank’s objective is to select a level of external

capital raised so as to minimize the expected value of the costs of capital and failure.

Assume that the levels of loans and deposits are given, for example, that they are

determined as in Bernanke and Blinder (1988). The bank’s problem is
min
fRtg

C ¼ EtðCf þ CcÞ: ð13Þ
This problem may be solved by substituting (10) and (12) into (13) and solving the

first-order conditions.

Proposition 1 11

(a) C is a ‘‘U-shaped’’ convex function of Rt.
(b) C has a global minimum at R�

t ¼ K� � Kt�1 þ EtLt, where K� is defined implicitly by
P ðKt < 0Þ ¼ Pðut > K�Þ ¼ 1� F ðK�Þ ¼ cc
cf þ cc

: ð14Þ
(c) The optimal expected level of capital is constant:
EtKt ¼ Kt�1 þ R�
t � EtLt ¼ K�: ð15Þ
Proposition 1(b) states that the solution to the model with no adjustment costs is

equivalent to a var approach to risk in which the probability of failure, which is fre-

quently viewed as a subjective parameter, is determined endogenously. Var is gener-

ally defined as the level at which the probability that losses will exceed var is no
greater than, say, a. 12 From (14), we have that
may be argued that there is also a fixed cost component to bank failures. Some important costs,

er, such as reputational costs to managers, would seem to be roughly proportional. Fixed costs are

luded in the model for tractability. It may also be argued that the proportional costs of capital and

would vary over an economic cycle. For instance, the cost of capital may be proportionately higher

economic downturn. If so, some of the cyclical fluctuations derived later in this paper may be

bated. Constant proportions are adopted in the model in order to obtain a closed form solution.

roofs of the propositions are given in Appendix A.

ee, for instance, Jorion (1997, Eqs. (5.3) and (5.4)). Duffie and Singleton (2003, Chapter 2) discuss

d, more generally, the economics of risk management.
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P ðut > K�Þ ¼ PðLt > EtLt þ K�Þ ¼ cc=ðcf þ ccÞ; ð16Þ
which implies that if we set a ¼ cc=ðcf þ ccÞ, then

vart ¼ EtLt þ K�: ð17Þ
Thus, a problem in which the objective function includes a desire to minimize a

conditional tail expectation corresponding to bank failure is seen to be equivalent to

setting var at a specific level, once the cost of capital is taken into account. 13

Note also that (15) and (17) imply that
R�
t ¼ vart � Kt�1; ð18Þ
which helps illustrate the importance of distinguishing between stocks and flows of
capital in the model. The optimal expected level of capital is constant and hence

uncorrelated with var, but (18) shows that the optimal flow of external capital varies

one-for-one with var, given the previous period’s level of capital.

2.3. Capital regulation

Thus far, we have approached capital from the perspective of the rational optimiz-

ing bank. In a world of perfect competitive equilibrium, that perspective would be suf-

ficient and there would be no need for capital regulation. In this section, we consider

the perspective of the regulator. What are the regulator’s preferences and how are

they motivated? Under what conditions is regulatory intervention acceptable or ad-
visable? If intervention is required, what tools are available to the regulator?

We assume that the regulator is driven by two goals emanating from aspects of

social welfare: to reduce the instability and social costs associated with bank failures

and to avoid distortions away from the equilibrium level of output. There is evidence

that these goals are in fact important to the regulatory community. Speaking to the

first goal, Greenspan (1998) says that ‘‘When the [1988 Basel] Accord was being

crafted, many supervisors may have had an implicit notion of what they meant by

soundness – they probably meant the likelihood of a bank becoming insolvent.’’ This
statement is consistent with the emphasis on the probability of failure in the results

of Section 2.2.

As to the second goal, Crockett (2000) expresses concern that binding capital re-

quirements may exacerbate the business cycle, particularly at the trough. He argues

that ‘‘Strengthening the macro-prudential orientation of the regulatory and supervi-

sory framework is important because of the costs and nature of financial instability

[i.e., excessive cyclicality]. The main costs take the form of output losses.’’ The im-

plicit positive connection between bank lending and output is consistent with eco-
recent paper by Artzner et al. (1999) argues that var is not – by their definition – a coherent

re of risk. They argue in favor of the class of coherent measures of risk, which includes conditional

pectations. The reader is referred to the mathematically rigorous treatment in Artzner et al. (1999)

tails of these distinctions. Note, however, that in the present model, var arises endogenously by

izing the weighted sum of two conditional tail expectations (Eq. (13)), one involving failure, as in

r et al. (1999), and the other involving the cost of capital.
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nomic theory and evidence. For example, Bernanke and Blinder (1988) propose a

model in which the demand for bank loans depends positively on the level of output.

A downward shift in the supply of bank lending leads to reductions in the equilib-

rium levels of both loans and output.

This section extends the model presented so far to include explicit regulatory pref-
erences based on the above considerations and to highlight the relationship between

risk, the supply of loans, and output. The extended model suggests that the proba-

bility of bank failure is positively related to the level of lending, that capital regula-

tion may affect the levels of lending and output, and that capital regulation may be

used in some circumstances to achieve social goals.

Let
14 T
pðVtÞ ¼ P ðut > K�Þ ¼ P gt

�
>

K�

Vt

�
ð19Þ
be the probability of failure as a function of the level of loans. The last equality

follows from (8). If the random variable gt is absolutely continuous and its density is

positive, then for a given level of expected capital K�,
p0ðVtÞ > 0: ð20Þ
Recall that an optimizing bank chooses Rt so that EtKt ¼ K�, where

P ðut > K�Þ ¼ cc=ðcf þ ccÞ. If au � cc=ðcf þ ccÞ and V u
t represent the unconstrained

levels of the probability of failure and lending, respectively, the optimality condition

may be expressed as pðV u
t Þ ¼ au.

Now suppose the preferences of the regulator are guided by the principles enun-
ciated by Greenspan and Crockett. The regulator sets capital requirements implicitly

by imposing a ceiling on the probability of failure, pðVtÞ6 aR. If the requirement is

binding, we assume in this section that the bank reacts by lending less, since raising

more capital would increase expected costs (Eq. (13)). 14

Let ptðaRÞ denote the actual probability of failure associated with a regulatory ceil-

ing aR. If aR P au, the unconstrained optimum prevails, pt ¼ au, and p0t ¼ 0. If

aR < au, the requirement is binding, pt ¼ aR, and p0t ¼ 1.

Output may also be affected by the regulatory requirement. As in Bernanke and
Blinder (1988), output Yt is positively related to lending, which is in turn positively

related to the likelihood of failure. Thus, Yt ¼ YtðVtÞ ¼ Ytðp�1ðptðaRÞÞÞ. Let

ytðaRÞ � wðYtÞ, where w is a monotonically increasing transformation representing

the value of output from the point of view of the regulator. As in the case of pt,
the unconstrained level of yt holds when the regulation is not binding ðaR P auÞ, so
that y0t ¼ 0. When aR < au, we assume that y0t > 0 and y00t < 0. That is, as the capital

requirement is tightened beyond the point at which it becomes binding, the marginal

cost of foregone output increases with each further tightening.
Suppose that, in line with Greenspan and Crockett, the regulatory or social objec-

tive is to select a level of aR so as to maximize
he alternative of raising more capital is examined in Section 3.3.
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Wt ¼ ytðaRÞ � ptðaRÞ: ð21Þ

There are two possible cases. First, suppose that y 0tðaRÞ > p0tðaRÞ for all aR < au, so
that the output cost of tightening the regulation is always higher than the benefit.

Then the regulator prefers not to impose a binding capital requirement. In contrast,

suppose that y0tðaRÞ < p0tðaRÞ for some aR. Then there is an interior solution to the

regulator’s problem and the optimal level of regulation aR is given by the first-order
condition is y0tðaRÞ ¼ p0tðaRÞ. In general, the regulator prefers not to distort output,

unless the relative marginal cost of failure is too high.

Regulation may also be effective when the costs involved in the bank’s optimiza-

tion process are distorted or mismeasured. Suppose that the bank’s estimate of the

cost of failure is ĉf < cf , where cf is the social cost as perceived by the regulator. This

situation may occur, for instance, if deposit insurance is mispriced. The bank will

then have an incentive to lend at a level consistent with
pðVtÞ ¼
cc

ĉf þ cc
>

cc
cf þ cc

; ð22Þ
implying that Vt > V u
t . The higher level of lending is associated with a probability of

failure that is inappropriately high from the point of view of the regulator. In this

case, the regulator could impose a requirement of the form pðVtÞ6 cc=ðcf þ ccÞ,
which would restore the socially optimal probability of failure and the corresponding
level of lending.

If the regulator decides to impose a regulatory capital requirement, the require-

ment may be expressed in various equivalent ways. As already indicated, one form

that is directly in line with the remarks by Greenspan (1998) is
pðVtÞ6 aR; ð23Þ

which sets an upper bound on the probability of failure. An alternative equivalent

form employs the concepts of initial capital It and var, as defined earlier. Specifically,

Eq. (15) may be written as It ¼ Kt�1 þ R�
t ¼ EtLt þ K� ¼ vart, so that

pðVtÞ6 cc=ðcf þ ccÞ may be expressed as
It P vart: ð24Þ

It is thus understandable that var constitutes an attractive benchmark for regulatory

design, at least in the static framework examined so far. 15

Another alternative formulation may be based, at least in principle, on the ac-

counting concept of loan loss reserves (LLR). If accounting rules require that loan

loss reserves be consistent with expected losses, as defined here, the ‘‘unexpected

loss’’ component of var (or UL, see Basel Committee, 1999) coincides with optimal

expected capital in the case with no adjustment costs. More precisely, if LLRt ¼ EtLt,

then ULt ¼ vart � LLRt ¼ vart � EtLt ¼ K� ¼ EtKt. Thus, (24) may be expressed as
EtKt PULt; ð25Þ

which is more in line with the framework of the Basel Committee (1999).
deposits are fixed, a requirement on I is also equivalent to a requirement on the ‘‘leverage ratio’’

DÞ. Note, however, that the minimum requirement is not constant, but is a function of var.



A. Estrella / Journal of Banking & Finance 28 (2004) 1469–1498 1479
2.4. Optimization with adjustment costs

We now bring adjustment costs explicitly into the model. These costs apply both

when the firm is raising new external capital and when it is shedding external capital.

Why do these entry and exit costs arise?
Several reasons have been given for entry costs in the corporate finance litera-

ture. For instance, these costs may be associated with asymmetric information. Eq-

uity is a form of capital for which monitoring costs are high, and the firm has an

informational advantage over public investors as to the value of its own equity

(Myers and Majluf, 1984). A related reason is that the issuance of equity may send

a signal to the market that it is being done at time most advantageous for the com-

pany and not necessarily for outside investors (Winter, 1994). A specific example of

this type of signal occurs when a bank is attempting to replenish capital after suf-
fering severe losses. A third reason is the ‘‘trapped equity effect’’ of dividend tax-

ation (Winter, 1994). Once equity is raised, it is costly for investors to obtain

returns in the form of dividends, which are subject to high taxes as compared with

other forms of income.

Exit costs may arise for various reasons as well. For instance, the firm may be

reluctant to shed equity if there is a good chance that it may have to bear round

trip costs of raising the equity again in the short term (Winter, 1994). A second

reason is the so-called stock repurchase premium (McNally, 1999). If the company
opts for shedding equity through a stock repurchase, the market may interpret this

as a signal that the company’s stock is undervalued. The stock price may rise tem-

porarily for non-fundamental reasons and the cost of the buyback may increase.

Finally, an important cost of shedding equity comes from pressure from regulators,

supervisors and market participants to maintain clearly sound levels of capital.

For all of the foregoing reasons, we model adjustment costs in the following sim-

ple form:
Ca ¼ 1
2
caR2

t : ð26Þ
Of course, there is no assurance that the costs will be symmetrical, as assumed in

(26). For instance, one might suspect that the costs of raising a given amount of

new capital are larger than the costs of shedding the same amount. Nevertheless,

since the objective is to study cyclical patterns and not to measure these costs

precisely, (26) seems like a reasonable approximation that preserves the qualitative

behavior while allowing for an explicit solution to the general model. Asymmetrical

adjustment costs would tend to skew cyclical fluctuations in one direction or the
other, but would not eliminate the existence of a cycle or fundamentally change its

length.

In fact, we adopt a similar approximation to the cost function C of the previous

section before constructing the full model. The reason is that we would like to have

linear-quadratic form for which the optimal solution may be computed explicitly.

Thus, we use a second-order Taylor approximation to the U-shaped function C
around the optimum value of R in the case with no adjustment costs:
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C � 1
2
ðcf þ ccÞF 0ðK�ÞðKt�1 þ Rt � EtLt � K�Þ2: ð27Þ
Note that the constant term is irrelevant for optimization and that the first-order

term disappears because the approximation is taken around the optimum.

Combining these approximations in an infinite-horizon objective function with

time-discount factor b, the bank’s intertemporal problem becomes
min
fRtþig

Et

X1
i¼0

bi 1

2
ðKtþi�1

�
þ Rtþi � Ltþi � K�Þ2 þ a

2
R2
tþi

�
; ð28Þ
subject to (4), where a ¼ ca=½ðcf þ ccÞF 0ðK�Þ�.
One strategy for solving this optimization problem is to use Eq. (4) to solve for Rt

and substitute the result in (28). Taking derivatives with respect to Ktþi,

i ¼ 0; 1; . . . ;1, we obtain the first-order conditions (or Euler equations)
Et Ktþiþ1

�
� c
b
Ktþi þ

1

b
Ktþi�1 �

1

b
Ltþi þ Ltþiþ1 þ

K�

ba

�
¼ 0; ð29Þ
i ¼ 0; 1; . . . ;1, where c � 1
a þ 1þ b. These allow for the solution of K in terms of

the L.
First note that there are two solutions to the characteristic polynomial k2 � c

b kþ
1
b ¼ 0 corresponding to K in (29), which satisfy 06 k1 < 1 and k2 ¼ 1

bk1
> 1. As is cus-

tomary in rational expectations models, the first root it solved backward and the sec-

ond root is solved forward in terms of K and L. In addition, the second root may be

expressed in terms of the first, so that only the first is needed to write the solution. 16

The optimal paths of the level of capital and net new external capital are given in the

following result.

Proposition 2. The solution to the optimization problem in expression (28), subject to
(4), satisfies
Kt ¼ ð1� k1ÞK� þ k1 Kt�1

(
þ Et

X1
i¼0

ðk1bÞiðbLtþiþ1 � LtþiÞ
)

� ut ð30Þ
and
Rt ¼ ð1� k1ÞðK� � Kt�1Þ þ Et

X1
i¼0

ð1� k1Þki1b
iLtþi: ð31Þ
Note also that the root k1 is a function of the adjustment cost parameter a such

that a ¼ 0 ) k1 ¼ 0 and a ! 1 ) k1 ! 1.

Eqs. (30) and (31) contain an infinity of expectational terms. 17 Until the expecta-

tions are defined, these equations do not constitute observable reduced form rela-

tionships between losses and the capital levels and flows. Nevertheless, the
ee Appendix A for an exact expression for k1.
he infinite horizons of the objective function and of the solution are consistent with a view that

banks do not disappear, but are taken over by other institutions.
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expressions may be used to gain some intuition into the rational expectations solu-

tion.

For instance, recall that when there are no adjustment costs, the expected level of

capital every period is set to K�, and new capital raised is whatever it takes to bring

expected capital to that desired level. Note that (30), apart from the disturbance
term, is a weighted average of K� and of a term involving last period’s capital and

the present values of expected future losses. These expected losses enter as present

values of generalized first differences of losses. When a ¼ k1 ¼ 0, the first term re-

ceives the full weight. As adjustment costs increase, the second term receives greater

weight and the optimal level tends to converge to K� only with a lag. In general, op-

timum expected capital will differ from K� ð¼ ULÞ and, when losses turn out to be

larger than expected, requirement (25) and its equivalent form (24) in terms of var

will tend to be violated.
The first term of Eq. (31) conveys the partial adjustment character of the solu-

tion. 18 The second term is a long-run weighted average of discounted expected

losses with weights ð1� k1Þki1, which add up to 1. When a ¼ 0, all the weight is

on contemporaneous expected losses and the equation reduces to K� � Kt�1 þ EtLt,

the static optimum. As a goes to infinity, the weights on the individual discounted

losses become more uniform and also much smaller. The second term gains in impor-

tance as a increases from zero, but as a approaches infinity, the cost of raising exter-

nal capital becomes prohibitive, and both terms go to zero.
Note that with adjustment costs, the myopic regulatory objective function (21)

has to be modified to be forward-looking. A natural extension is to retain (21),

but to define ytðaRÞ ¼ w
P1

i¼0 b
iYtþiðVtþiÞ

� �
and ptðaRÞ ¼ max pðVtþiÞf g1i¼0, both under

the assumption that pðVtþiÞ6 aR in each period. Thus, the regulator focuses on the

present value of current and future output and on the worst-case probability of fail-

ure in the foreseeable future. With these definitions, determination of the regulatory

optimum aR follows essentially the same principles as in the case with no adjustment

costs.
3. Cyclical behavior

To model cyclical behavior, we need a specification in which losses tend to behave

cyclically in a way that is at least partly predictable. 19 We then insert this process

into the optimal solutions given by (30) and (31), and examine the consequences

for Kt, Rt and DKt over time.
Thus, let the process for losses be represented by
18 In

the deb
19 S

Stock
Lt ¼ ð2 cosxÞLt�1 � Lt�2 þ ut ð32Þ
the context of an empirical model, Hovakimian et al. (2001) use a partial adjustment approach to

t–equity choice problem.

tatistical analysis has shown that the business cycle is at least partly predictable. See, for instance,

and Watson (1989, 1993), Estrella and Mishkin (1998), and Estrella (2003).
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with 0 < x < p, where ut is white noise. Expected losses then follow a cycle of fre-

quency x with constant amplitude. It is normally desirable that the roots of a process

like (32) lie outside the unit circle, which implies that the process is stationary. For

present purposes, it is more convenient to use the limiting case in which the roots lie

on the unit circle so that cycles remain undampened and their properties are clearer
to examine. Section 3.3 considers the stationary case.

The assumption of a sinusoidal pattern is not entirely realistic, but is used to gain

insights into optimal behavior under truly cyclical conditions. Moreover, the as-

sumption is justified by the fact that any stationary time series may be expressed

as a linear combination of sinusoids (see, for example, Jenkins and Watts, 1968). Us-

ing multiple sinusoids could lead to more realistic patterns, but would also compli-

cate the analysis and obscure the intuition behind the results that follow.

In addition to having convenient cyclical properties, expected future losses under
this process have a simple form,
20 F

the va
EtLtþn ¼
mnþ2

2 � mnþ2
1

m2 � m1

Lt�1 �
m1mnþ2

2 � m2mnþ2
1

m2 � m1

Lt�2; ð33Þ
where m1 and m2 are expð�ixÞ, which correspond to the complex conjugate roots of

Eq. (32). This expression makes it possible to transform (30) and (31) into observable

equations. For simplicity, we assume that the unconditional mean of L is zero. Since
L represents the negative of net income, its unconditional mean is likely to be neg-

ative. However, results with non-zero unconditional mean are qualitatively very

similar. 20
3.1. Optimal behavior with cyclical losses

Suppose that losses are cyclical in the manner defined in Eq. (32). Since expecta-
tions of losses at all horizons are given by Eq. (33), we replace the expectation terms

in expressions (30) and (31) to obtain equivalent expressions based only on observa-

ble variables. In particular, we have:

Proposition 3. Suppose that losses follow the cyclical pattern (32), where the shock ut
has a constant distribution F . Then the optimal level of capital and the optimal net flow
of external capital are given by
Kt ¼ ð1� k1ÞK� þ k1Kt�1 � EtLt þ d1Lt�1 þ d2Lt�2 � ut ð34Þ
and
Rt ¼ ð1� k1ÞðK� � Kt�1Þ þ d1Lt�1 þ d2Lt�2; ð35Þ
respectively, where di ¼ diða; b;xÞ (with d1 ¼ 2 cosx and d2 ¼ �1 when k1 ¼ 0 and
d1 ¼ d2 ¼ 0 when k1 ¼ 1). Exact expressions for the di are given in Appendix A.
or a detailed discussion of the implications of a non-zero unconditional mean for expectations of

riables in the model, see Estrella (2003).
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The results of Proposition 3 may be used to construct numerical illustrations and

also to examine in more detail the cyclical relationships among the variables. We

start with the illustrations.

Fig. 1 shows the effects of a stochastic shock to Lt of size sinx. A shock of this

magnitude produces a cycle in losses of amplitude 2 (losses are in the range of
�1), which is a convenient benchmark. The choice of a ¼ 5 is somewhat arbitrary,

but is roughly consistent with empirical estimates presented later in Section 4.

The figure also assumes that the frequency x is 2p=20 and that the discount fac-

tor b has a value of 1/1.01. These assumptions correspond to a quarterly model in

which the cycle lasts for 5 years (20 quarters) and the annual discount rate is about

4%. The starting values for all variables in Fig. 1 are their respective unconditional

means.

Panel A of Fig. 1 shows the pattern of the time series for losses, following the ini-
tial shock to that series, as well as the reaction of the optimizing bank in terms

of external capital raised ðRÞ. The optimal amount of external capital raised rises
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Fig. 1. Responses to a stochastic shock to Lt quarterly data, initial shock of size sinx to Lt in quarter num-

ber 1: (A) losses and external capital raised, (B) capital level and var, (C) initial capital and var.
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sharply in the second quarter in response to the shock to losses one period earlier.

Within a few quarters, the capital raised falls into a cyclical pattern whose timing

is very close to that of losses, but with smaller amplitude.

Panel B compares var with the overall level of capital. We have seen that the pat-

tern of var is essentially the same as that of losses, except that var is transposed up-
ward by a constant amount K�, which we assume has a value of 3 for illustrative

purposes. 21 The level of capital moves in a cycle that is out of phase with the cycle

of losses. We will see shortly that the lag in the cyclical movements of the level of

capital, relative to losses, bears a consistent relationship to the length of the cycle.

This lag is easy to see with the parameter values in Fig. 1, but it holds in general.

In addition, the level of capital sometimes moves in the same direction as var, and

sometimes in the opposite direction. On balance, we will see that this relationship

is negative.
In Panel C of Fig. 1, we see a comparison between initial capital and var, which

corresponds to the capital requirement (24) derived from static optimization. Ab-

stracting from adjustment costs, it would be reasonable to require the bank to hold

initial capital at least in the amount of var. With adjustment costs, however, it is op-

timal for the bank to adjust its capital with a lag, as seen in Panel C.

The lag results in a conflict between var and optimal initial capital. The shock to

losses raises the value of var more rapidly than the optimal level of initial capital

(which also rises). The value of var continues to exceed the optimal level of capital
over approximately one half of the cycle, with the opposite relationship holding over

the other half. This result suggests that a minimum capital requirement based on var

would be binding following contractionary shocks, in which losses are higher than

anticipated, and loose after expansionary shocks, when losses fall short of expecta-

tions.

From the point of view of the regulator, var is neither more nor less conservative

than optimal capital on a consistent basis. A var-based requirement is consistent

with assuming away the effects of adjustment costs. However, the degree to which
a var requirement is binding depends on whether the initial shock to losses is positive

or negative, and on the current stage within the resulting cycle.

Some intuition for the foregoing results may be obtained by considering two op-

posing influences on capital. If the economy experiences a negative shock, bank

losses tend to be higher, which tends to deplete capital. However, measures of risk

tend to indicate a greater need for capital and the natural reaction is for the bank

to raise capital. In the absence of adjustment costs, the bank fully offsets losses

and the level of capital remains constant. However, if there are adjustment costs,
the reaction is somewhat delayed and it is optimal to allow capital to remain below

the unconditional mean level for a period, as shown in Panel B.
21 This value is consistent with an infinity of parametric assumptions and distributions. It is obtained,

for example, by assuming that the innovation ut follows a normal distribution with standard deviation

1.46, and that cc=ðcf þ ccÞ ¼ 0:02.
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With adjustment costs, capital tends to vary in a pattern that is not exactly syn-

chronized with var. One result is that there tends to be a conflict between the behav-

ior of an essentially myopic measure of risk, like var, and the behavior of optimal

bank capital over the cycle.

3.2. Covariances and lags between optimal capital and var

The important questions regarding the procyclicality of var-based requirements

focus on the relationship between optimal capital and var at cyclical frequencies.

Since we have assumed that our cycle has frequency x, this is the relevant frequency
for the analysis of covariation. This section uses frequency domain techniques to ex-

amine the relevant relationships for in-phase components of frequency x and to

compute the exact phase lag between optimal capital and var, which was observed
in Fig. 1.

First, we compute the equivalent of regression coefficients for each of the key op-

timal variables with respect to var. These coefficients are obtained from the lag struc-

tures of Eqs. (34) and (35). Thus, let Y represent one of R, DK, K or I , and let
22 S
Yt ¼ hYX ðLÞXt: ð36Þ

Note that Eqs. (34) and (35) are of this form with Y ¼ K and R, alternatively, and
X ¼ L. Note also that a constant may be added to the right-hand side of Eq. (36)

without fundamentally affecting the results. The coefficient of a regression of the

component of Y of frequency x on the in-phase component of X of frequency x is

given by
bYX ðxÞ ¼ ReðhYX ðe�ixÞÞ; ð37Þ

where ‘‘Re’’ indicates the real part of the complex number in parentheses. 22

Proposition 4. In spectral regressions of the sort described above,

(a) the coefficient of R regressed on L is non-negative for any frequency x,
06 bRLðxÞ6 1;
(b) the coefficient of DK regressed on L is non-positive for any frequency x,
�16 bDKLðxÞ6 0;
(c) the coefficient of K regressed on L is non-positive for any frequency x,
bKLðxÞ6 0; and
(d) the coefficient of I regressed on L is less than or equal to unity for any frequency x,
bILðxÞ6 1:
ee, e.g., Jenkins and Watts (1968, Section 8.3.1).
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Expressions for the coefficients are found in Appendix A. If the regressor in Prop-

osition 4 were var instead of L, the regression coefficients would have the same signs,

but would be closer to zero. To see this, note that Eq. (17) implies that
23 S
Lt ¼ vart � K� þ ut: ð38Þ
Thus, L and var differ by a constant plus an innovation that is uncorrelated with var,
and we have effectively an errors-in-variables problem in which the regression co-

efficient is biased toward zero.

The signs of the relationships between R and either L or var are easily verified in

Fig. 1 (Panels A and B). The signs of the coefficients of K and I are harder to visu-

alize in Panels B and C because, although the patterns are similar to those of L and

var, they appear to be transposed in time by a few periods. We can use the frequency

domain specification to examine the lengths of these lags.

The lag in the relationship between K and L may be calculated explicitly from the
phase function, which is defined as
/KLðxÞ ¼ argðhKLðe�ixÞÞ: ð39Þ
Here, ‘‘arg’’ is the argument of the complex number in parentheses, that is, the angle

that appears in the exponent of the polar form of the number. The ratio
�/KLðxÞ=x ð40Þ
is a measure of the phase lag between K and L, measured in periods. 23 Thus, if a
cyclical peak in Lt occurs at time t0, then a cyclical peak in Kt occurs at time

t0 þ �/KLðxÞ=xð Þ.

Proposition 5

(a) When a > 0, the phase lag between K and L lies in the interval
1

x
tan�1 b sinx

1� b cosx

� �
6 � /KLðxÞ=x6

1

x
tan�1 sinx

1� cosx

� �
: ð41Þ
(b) Since b � 1,
�/KLðxÞ=x � 1

x
tan�1 sinx

1� cosx

� �
¼ � 1

2
� q
4
; ð42Þ

where q ¼ 2p=x is the length of the cycle of frequency x, in periods.
In Fig. 1, q ¼ 20 and the phase lag for K in Panel B is about )5.5 quarters (peri-

ods). This means that Kt peaks about 5.5 quarters before Lt and has a trough one-

half cycle later, or about 4.5 quarters after Lt peaks.
A look at Panel C suggests that initial capital I , like K, leads losses Lt over the

cycle. This relationship holds generally, but in contrast to the phase lag for K, the
argent (1979, Section XI.6) provides a helpful discussion of phase lags.
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exact phase lag for I depends more substantively on the adjustment cost parameter a.
As a approaches zero, the model approaches the static case, in which optimal initial

capital equals var. In that extreme case, the phase lag is zero. In the case illustrated in

Fig. 1, with a ¼ 5 and q ¼ 20, the phase lag for initial capital is )2.9, so that I peaks
about three quarters before var.

3.3. Constrained optimization with a var requirement

In Section 2.3, the optimizing bank responds to a binding capital requirement by
reducing the supply of lending, which has a negative effect on economic output. In

this section, we examine the additional costs incurred by an optimizing bank if it

maintains the unconstrained supply of lending but is required by the regulator to

set initial capital to be at least var. The relative magnitude of the additional costs

incurred suggests that the net effect of this type of cyclically binding regulation is

likely to be a reduction in lending and output, as assumed earlier.

As before, the bank minimizes the objective function (28) subject to the dynamic

identity (4), but now constraint (24) requiring that initial capital be at least var is also
imposed. An analytical solution is not available under this additional constraint, but

the problem may be solved numerically, particularly if the cycle for losses is mean-

reverting. Thus, in contrast to the cyclical model of losses employed so far in Section

3, we now assume that the AR(2) process for losses has roots outside the unit circle.

In particular, we take the roots to be 4
3
expð�ixÞ so that m1 and m2 are

3
4
expð�ixÞ.

With these values, the variables in the model essentially return to their equilibrium

levels within a 40-period horizon following a shock, allowing for straightforward nu-

merical solution.
Fig. 2 shows the behavior of var and of unconstrained and constrained optimal

initial capital when we take a ¼ 5 and x ¼ 2p=20, as so far in this section. Note first

that when the cycle is dampened, the conflict between optimal initial capital and var

is dominated by the first part of the cycle. When the shock is adverse, as in the figure,

the constraint tends to be binding over most of the period of adjustment back to

equilibrium.

The var constraint is binding in various ways. In a direct sense, we see that var

exceeds the unconstrained optimum for 13 quarters after the initial shock. Second,
the constraint is binding in the sense that constrained capital is higher than the un-

constrained level throughout the whole period. Third, constrained capital is strictly

higher than var starting with the ninth period after the shock, even though var is at

or below its equilibrium level.

The severity of the constraint is reflected in the values of the objective function

corresponding to the three paths in Fig. 2. The absolute levels of the function are

not meaningful, but the relative levels for the three paths provide some indication

of the cost of moving from optimum to var and of the improvement from optimizing
subject to the inequality constraint based on var. The unconstrained optimum level is

1.079, var is 1.844, and the constrained optimum is 1.842. Most of the slight im-

provement from var to the constrained optimum (88%) is attributable to reduced ad-

justment costs.
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Fig. 2. Optimum initial capital: unconstrained, var, constrained quarterly data, initial shock of size sinx
to Lt in quarter number 1.
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3.4. Discussion of results

The conflict between optimal capital and a var-based minimum requirement that

we see in Fig. 1 (and in Propositions 4(c) and (d)) may manifest itself in practice in

two forms, depending on whether the economy is expanding or contracting.

In the contraction phase of the cycle, bank capital falls below the var level and the

potential is for a credit crunch. If the bank were to maintain its level of lending, we

have seen in Section 3.3 that costs would be prohibitively high. However, if it

chooses to hold down its costs, as in Section 2.3, it is driven to cut back on risky as-
sets, such as commercial loans.

The potential for this type conflict may be reduced by judicious calibration of the

var-based minimum requirement. It is important to consider not only the uncondi-

tional average relationship between var and the level of capital, but also the relation-

ship conditional on an economic downturn.

During the expansion phase of the cycle, the level of optimal capital may greatly

exceed a var-based minimum requirement, which creates a potential moral hazard

problem. The level of optimal capital may be so far above the var minimum that
the bank may be tempted to let capital fall toward the minimum, or it may use

the ‘‘excess capital’’ to fund substandard loans. Pillar 2 (supervisory review process)

of the new Basel Accord (Basel Committee, 2001c) contains important provisions

that could be very useful in dealing with this type of moral hazard problem.

Specifically, Principle 3 states that ‘‘Supervisors should expect banks to operate

above the minimum regulatory capital ratios and should have the ability to require

banks to hold capital in excess of the minimum.’’ The motivation that the Basel
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Committee gives for this principle is close to the issues raised in the present paper.

For instance, the Committee refers to adjustment costs (‘‘It may be costly for a bank

to raise additional capital, especially if this needs to be done quickly or at a time

when market conditions are unfavorable.’’) and to macroeconomic cycles (‘‘There

may be risks . . . to an economy at large . . . that are not taken into account in Pillar
1 [quantitative requirements].’’).
4. Empirical evidence

In this section, we consider the empirical plausibility of the theoretical model pre-

sented in this paper. Ideally, one would estimate the model directly using data for

individual banks. However, that strategy is unavailable because of a lack of appro-
priate data. Accounting data on banks’ net income is not reflective of the true sto-

chastic distribution of losses, which plays a central role in the model. The level of

income may be accurately represented on average, but the volatility of income and

the likelihood of a large loss tend to be greatly understated. Therefore, this section

focuses on the empirical verification of a few empirical implications of the model.

In particular, we look at aggregate time series data over a period containing at

least one business cycle. Detailed data on changes in capital for all FDIC-insured

US commercial banks are available at a quarterly frequency from 1984 to 2001 (from
the FFIEC call reports). We use annualized data here to avoid seasonal effects, but

quarterly results are similar.

The empirical variables are defined as follows. Net losses, Lt, correspond to the

negative of net income, net new external capital raised, Rt, corresponds to net new

external capital minus dividends paid, and the level of capital, Kt, corresponds to to-

tal equity capital. Two elements of capital are excluded from the analysis, namely

changes incident to business combinations, to avoid double counting, and unrealized

gains from available-for-sale securities, since we wish to focus on medium-frequency
cyclical fluctuations rather than short-term volatility.

Consider the implications of two features of the model. First, the model assumes

that adjustment costs are associated with changes in external capital in either direc-

tion. Thus, we would expect that net external capital should be close to zero unless

net income or losses are very large. If net income is large, there may be a tendency to

shed external capital, which is replaced with cost-effective internally generated cap-

ital. If losses are very large, there may be a need to raise external capital to return

to prudent levels of capitalization. Second, we expect from Proposition 4 that net
new external capital raised ðRtÞ should move in the opposite direction from net in-

come ð�LtÞ, while the net change in capital ðDKtÞ should move with net income.

Fig. 3 shows that the values of these three variables over the sample period tend to

confirm the regularities described in the previous paragraph. As expected, net exter-

nal capital raised is relatively close to zero until 1992. After that observation, the

economy entered a fairly vigorous economic expansion and net income grew year af-

ter year. The banks proceeded to shed some external capital, mainly by expanding

their dividend payments. The figure also suggests that net external capital and the
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Fig. 3. Bank income and capital flows, all FDIC-insured banks, converted to millions of 1999 dollars

using GDP deflator.
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net change in capital exhibit the expected relationships to net income. We return to
this question shortly.

A few exceptional spikes are noteworthy in Fig. 3. For example, spikes occur in

both the net income and net change in capital series in 1987. In that year, several in-

ternationally-active banks made substantial provisions for loans to ‘‘less developed

countries’’ (LDCs), which had been deteriorating since the early 1980s. The net ex-

ternal capital series shows an upward spike in 1992, most likely as a result of the 1988

Basel Accord and the 1991 US banking legislation, both of which came fully into ef-

fect in that year. Other than at these junctures, banks seem to have behaved generally
as suggested by the theoretical model for optimal capital.

We now turn to evidence based on the relationships between Rt and Lt, and be-

tween DKt and Lt, in the cyclical model of Section 3. The mathematical relationship

between the contemporaneous levels of Rt and Lt in Eq. (35) does not appear to be

simple, but the spectral linear regression discussed in Proposition 4(a) seems to cap-

ture most of the observed relationship between Rt and Lt. The same is true of the re-

gression of DKt on Lt. We see evidence of this in the empirical results of Table 2.

The first three numerical columns of Table 2 show the theoretical values of the
spectral regression coefficients bRLðxÞ and bDKLðxÞ, calculated from the formulas

for the coefficients given in Appendix A. The values of the parameters in the column

labeled a ¼ 5 are the same as in the earlier numerical illustrations. Under those as-

sumptions, the relationship between Rt and Lt is linear, with a slope of 0.672. That is,

for every additional dollar of net income (losses less by $1), the amount of net exter-

nal capital raised falls by 67 cents.



Table 2

Theoretical and numerical coefficients of regressions of capital flows on Lt

Parameter Theoretical model Empirical model

a ¼ 1 a ¼ 5 a ¼ 10

Numerical bRL 0.911 0.672 0.506 0.661

Std. error – – – 0.081

R2 – – – 0.806

Numerical bDKL )0.089 )0.328 )0.494 )0.352
Std. error – – – 0.078

R2 – – – 0.559

Note: In the theoretical model, b ¼ 1=1:01 and x ¼ 2p=20.
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For comparison, Table 2 also provides the value of the bRLðxÞ coefficient when a is
either 1 or 10. When adjustment costs are lower, the reaction to a given change in

income is larger (91 cents per dollar), whereas for larger adjustment costs, the reac-
tion is more sluggish (51 cents per dollar).

The lower panel of Table 2 provides the same type of analysis for the coefficient of

the net change in capital, bDKLðxÞ. For example, the effect of an additional dollar of

net income is to raise capital by 33 cents. The additional dollar flows into capital, but

is offset by a 67 cent reduction in new capital raised, as noted above.

The final column in Table 2 presents time domain estimates of the corresponding

regression coefficients, using the data described above for US banks from 1984 to

2001. The fit of the equations is relatively good, with an R2 of 81% for R and L
and a significantly positive coefficient estimate, as the theory implies. The empirical

estimate of bDKL is significantly negative, in agreement with the implications of the

model, and the R2 is 56%.

The empirical estimates are very similar to those obtained from the model with

a ¼ 5. In fact, we can use the empirical regression estimate of bRL, together with

the expressions for bRLðxÞ and k1 in Appendix A, to solve for empirical estimates

of k1 and a, given b and x. 24 The estimates, followed in parentheses by standard er-

rors computed by the delta method, are k1 ¼ 0:651 (0.050) and a ¼ 5:25 (1.90). The t
statistic for a is 2.76, suggesting that adjustment costs play a significant role.

Fig. 4 confirms visually that the linear relationships in the empirical regressions

are fairly accurate approximations of the data for banks from 1984 to 2001. The fig-

ure shows a scatter plot of the data for both external capital raised and net change in

capital, plotted against net income. Also shown in the figure are the fitted values

from the empirical regressions in Table 2. As in Fig. 3, the only large outliers corre-

spond to the large loss provisions in 1987, which led to very low net income, and to

the effects in 1992 of the 1988 Basel Accord and of the 1991 banking legislation.
24 It is customary in empirical estimates of these types of models to take the value of b as given because

it can only be estimated very imprecisely and the other estimates are not very dependent on its particular

value. See West (1995).
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5. Policy implications

This paper investigates the issue of whether var-based minimum capital require-

ments are procyclical by comparing the dynamic path of optimum bank capital with

the path of var. In the absence of adjustment costs, it is possible to rely on var to

define a capital requirement that corresponds to optimal behavior. Specifically, the

probability of the bank’s failure if the requirement is met will be no greater than

the probability associated with the optimum level of capital. In order to use var as

a benchmark, however, it has to be compared with initial capital: the bank’s level
of capital at the beginning of the period after external capital has been raised. Other

definitions of capital would produce conflicts with var over the cycle.

However, the empirical evidence suggests that adjustment costs play a significant

role in practice. In a dynamic context with adjustment costs, conflicts between opti-

mal capital and var tend to develop if var is used to formulate a capital requirement,

even if the concept of initial capital is used in the definition. The problem is that var

is an essentially static concept, which does not incorporate information about the

costs of adjusting to an optimal level.
The optimum level of capital with adjustment costs tends to lead var by about one

quarter of a cycle. If the average level of optimum capital differs from the average var

by an amount comparable to one-half the amplitude of either variable, or less, peri-

odic conflicts between the two are likely. Contemporaneous movements in these two

variables are sometimes positively, sometimes negatively related, but on average they

are negatively related over the cycle.

If var is used as a benchmark for initial capital, as the static model suggests, per-

sistent conflicts between var and optimal initial capital may develop over the cycle.
In a realistic framework in which the process for losses is stationary, these conflicts
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tend to predominate when the economy and the bank are subject to adverse eco-

nomic shocks.

Like the optimum level of capital, the change in the optimum level is negatively

related to var, but in this case the relationship is clearer and contemporaneous. In

contrast, a positive relationship exists between the optimum flow of net new exter-
nal capital raised and var. These and the foregoing regularities suggest that a var-

based minimum requirement is likely to be procyclical if it is applied to the level of

capital, but that procyclicality might be avoided if the requirement is applied to

capital flows.

The analysis points to various possible solutions to the problem of procyclicality.

First, the danger of causing a credit crunch in an economic downturn may be re-

duced by judicious calibration of a var-based minimum requirement. In the calibra-

tion process, the key is to focus on the relationship between var and optimum capital
during an economic downturn, rather than simply looking at the unconditional av-

erage relationship between these variables.

Second, supervisory review may be very helpful in dealing with the moral hazard

problem that confronts banks as the gap between var and optimum capital increases

in an economic expansion. At times, the gap may be so large that there is a tempta-

tion to follow a shortsighted approach and to let capital fall toward the var. In the

model, the fact that the bank is a rational optimizer is axiomatic. However, if a frac-

tion of the banking sector consisted of non-optimizers, there would be scope for the
introduction of an agent – a supervisor – to ensure that those banks could be iden-

tified. Supervisory review could be used to insure that each bank maintained an ad-

equate buffer between minimum and actual capital even when a formal requirement

is non-binding. This type of supervisory strategy is employed in Pillar 2 of the new

Basel Accord.

Third, var may be the basis for an acyclical capital requirement – one that does

not conflict with optimum levels over the cycle – if it is applied to net external cap-

ital raised. In a scheme of this sort, the minimum capital raised could be some frac-
tion of the amount that would be raised in the absence of adjustment costs. In that

case, minimum requirements would not tend to conflict with optimum capital at

cyclical frequencies, and would be less likely to exacerbate normal cyclical fluctu-

ations.
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Appendix A. Proofs of propositions

Proof of Proposition 1. From the definitions, we can compute that
C ¼ ðcf þ ccÞ
Z 1

Kt�1þRt�EtLt

ð�Kt�1 � Rt þ EtLt þ utÞF 0ðutÞdut

þ ccðKt�1 þ Rt � EtLtÞ;
from which it follows that
oC
oRt

¼ �ðcf þ ccÞ
Z 1

Kt�1þRt�EtLt

F 0ðutÞdut þ cc;
o2C
oR2

t

¼ ðcf þ ccÞF 0ðKt�1 þ Rt � EtLtÞ > 0:
Setting the first derivative to zero implies that
P ðut > EtKt ¼ Kt�1 þ Rt � EtLtÞ ¼ cc=ðcf þ ccÞ:
Parts (a)–(c) of the proposition follow directly from these results. h

Proof of Proposition 2. The coefficients of Ktþiþ1 and its lags in Eq. (29) may be

expressed as 1� c
bLþ 1

b L
2 ¼ ð1� k1LÞð1� k2LÞ, where L is the lag operator (used

only in this proof and not to be confused with losses) and
k1 ¼ 1

�
þ baþ a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ baþ aÞ2 � 4ba2

q �

ð2baÞ:
Thus, 06 k1 < 1 and k2 ¼ 1
bk1

> 1. Note that L
1�k2L

¼ �bk1
1�bk1L�1 and multiply (29)

throughout by this ratio. The left-hand side expression for the ratio cancels the
second factor in the coefficient polynomial for Ktþiþ1, whereas the right-hand side

expression is applied to the terms in Ltþiþ1 and to the constant term. These last two

operations lead to the sum of expectations and the constant term in Eq. (30). Eq. (31)

follows by substituting (30) into (4). h

Proof of Proposition 3. Use Eq. (33) to express the expectational terms in (31) as a

linear combination of Lt�1 and Lt�2 in which the coefficients are infinite geometric

sums involving powers of k1, b, m1 and m2. Applying standard closed-form expres-
sions for these infinite sums, we arrive at (35), where
d1 ¼
ð1� k1Þð2 cosx� k1bÞ
1� 2k1b cosxþ k21b

2
;

d2 ¼
k1 � 1

1� 2k1b cosxþ k21b
2
:

Eq. (34) then follows from (4) and (35). h
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Proof of Proposition 4. The coefficients of the spectral regressions in Section 3.2. may

be written as
bRLðxÞ ¼
ð1� k1Þð1� k1bÞ ð1� k1Þð1� k1bÞ þ k1ð1þ bÞð1� cosxÞ½ �
ð1� k1Þ2 þ 2k1ð1� cosxÞ
h i

ð1� k1bÞ2 þ 2k1bð1� cosxÞ
h i ;

bDKLðxÞ ¼ bRLðxÞ � 1;

bKLðxÞ ¼
�k1 ð1� bÞ2 þ 2bð1� cosxÞ

h i
ð1� cosxÞk1 þð1� bcosxÞð1� k1bÞð1� k1Þ

n o
ð1� k1Þ2 þ 2k1ð1� cosxÞ
h i

ð1� k1bÞ2 þ 2k1bð1� cosxÞ
h i ;

bILðxÞ ¼ bKLðxÞ þ 1:
It is immediately clear that bRLðxÞP 0 (hence bDKLðxÞP � 1) and that bKLðxÞ6 0
(hence bILðxÞ6 1). It may also be shown that bRLðxÞ6 1, hence bDKLðxÞ6 0. Note

that it is possible that bILðxÞ < 0 if adjustment costs are high (k1 close to 1) and the

cycle is long (x close to 0). h

Proof of Proposition 5. Eq. (39) may be expressed as
/KLðxÞ ¼ tan�1 ImðhKLðe�ixÞÞ
ReðhKLðe�ixÞÞ

� �
:

Because of the periodicity of the tan function (p), tan�1 is multi-valued and one must

choose a solution according to the signs of ReðhKLðe�ixÞÞ and ImðhKLðe�ixÞÞ. These
signs are determined, respectively, by
�k1 ð1
�

� 2b cosxþ b2Þk1 þ bð1� bk1Þð1� k1Þ
�
< 0
and
k1 ð1
�

� 2b cosxþ b2Þð1� cosxÞk1 þ ð1� b cosxÞð1� bk1Þð1� k1Þ
�
sinx > 0;
so that p=26/KLðxÞ6 p. The argument of the tan�1 function may be written as
Aðk1Þ ¼ �
ð1� 2b cosxþ b2Þk1 þ bð1� bk1Þð1� k1Þ
� �

sinx

ð1� 2b cosxþ b2Þð1� cosxÞk1 þ ð1� b cosxÞð1� bk1Þð1� k1Þ
;

which satisfies Að0Þ ¼ b sinx=ð1� b cosxÞ and Að1Þ ¼ sinx=ð1� cosxÞ. We also

have that
dA
dk1

¼ � ð1� 2b cosxþ b2Þð1� bÞð1� k21bÞ sinx
ð1� 2b cosxþ b2Þð1� cosxÞk1 þ ð1� b cosxÞð1� bk1Þð1� k1Þ
� �2 ;
which is positive for 0 < k1 6 1 and 0 < x < p. This proves part (a) of the propo-

sition. For part (b), we use three standard trigonometric identities,
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sin 2h ¼ 2 sin h cos h, sin2 h ¼ ð1� cos 2hÞ=2, and cot�1 x ¼ p=2� tan�1 x. From the

first two, with h ¼ x=2, we obtain that
sinx
1� cosx

¼ cot
x
2
:

Applying the third identity to this equation and using the fact that tan�1 is an odd

function results in
tan�1

�
� sinx
1� cosx

�
¼ x

2
� p

2
þ p ¼ x

2
þ p

2
;

where p must be added to the solution so that it satisfies p=26/KLðxÞ6 p. Finally,
� 1

x
tan�1

�
� sinx
1� cosx

�
¼ � 1

2
� p
2x

¼ � 1

2
� q
4
;

where we define q � 2p=x. h
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